
Bilkent University

Department of Computer Engineering

Senior Design Project

T2325

LibreBot

Analysis and Requirement Report

21902298, Giray Akyol, giray.akyol@ug.bilkent.edu.tr

21901779, Muhammed Can Küçükaslan,

can.kucukaslan@ug.bilkent.edu.tr

21802880, Muhammet Hikmet Şimşir,

hikmet.simsir@ug.bilkent.edu.tr

21803473, Mustafa Utku Aydoğdu,

utku.aydogdu@ug.bilkent.edu.tr

21802530, Mustafa Yasir Altunhan,

yasir.altunhan@ug.bilkent.edu.tr

Supervisor: Salih Özgür Öğüz

Course Instructors: Erhan Dolak, Tağmaç Topal

2022-11-11

This report is submitted to the Department of Computer Engineering of Bilkent

University in partial fulfilment of the requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction 3

2 Current System 3

3 Proposed System 3
3.1 Overview 3
3.2 Functional Requirements 5

3.2.1 System Functionalities 5
3.2.1.1 Perception 5
3.2.1.2 Decision-Making and Interaction 6

3.2.2 User Functionalities 6
3.3 Non-functional Requirements 7

3.3.1 Performance and Efficiency 7
3.3.2 Usability 7
3.3.3 Extensibility and Portability 7

3.4 Pseudo Requirements 7
3.5 System Models 7

3.5.1 Scenarios 7
3.5.2 Use-Case Model 11
3.5.3 Object and Class Model 13
3.5.4 Dynamic Models 14

3.5.4.1 Activity Diagrams 14
3.5.4.1.1 Place Misplaced Books In a Shelf 14
5.4.1.2 Manage Collision 15

3.5.4.2 State Diagrams 16
3.5.3.2.1 Obstacle Detection 16
3.5.3.2.2 Book Fetch 17

4 Other Analysis Elements 17
4.1 Consideration of Various Factors in Engineering Design 17

4.1.1 Public Health Considerations 17
4.1.2. Public Safety Considerations 18
4.1.3. Public Welfare Considerations 18
4.1.4. Global Considerations 18
4.1.5. Cultural Considerations 18
4.1.6. Social Considerations 18
4.1.7. Environmental Considerations 18
4.1.8. Economic Considerations 19

4.2 Risks and Alternatives 19
4.3 Project Plan 20
4.4 Ensuring Proper Teamwork 22
4.5 Ethics and Professional Responsibilities 22
4.6 Planning for New Knowledge and Learning Strategies 23

5 References 24

2

Analysis and Requirement Report
LibreBot

1 Introduction
Organizing books in a library and keeping them organized is a tedious and

time-consuming job that humans still perform. The time and effort put into finding a
desired book in the library by a library user increases as the number of books and
categories increase in the library. In the age of the fourth industrial revolution, where
autonomous robots became a significant part of the workforce in many sectors, the
use of robots in this daunting job is still very limited. Our project's purpose is to
model a robot that can be used to automate the organization of library books taking
advantage of state-of-the-art technologies. The robot will be able to perceive its
environment and detect books using computer vision, identify books by radio
frequency identification (RFID) tags or call numbers, and collect from or place them
on appropriate shelves, according to the library classification system, using the
state-of-the-art machine learning technologies for task and motion planning (TAMP).

2 Current System
AuRoSS is a system proposed by Li, Huang, et al. [6] that strives to solve the

library book tracking problem LibreBot also aims to solve. A significant difference
between LibreBot and AuRoSS is how the systems identify books. While both
LibreBot and AuRoSS use RFID tags, LibreBot will also use computer vision and text
recognition when RFID is not available. If the book does not have RFID tags
LibreBot requires that the book label is not damaged, not obstructed and the
environment has sufficient lighting to extract the information. On the other hand,
RFID tags require high-accuracy positioning of the scanner and enough range of the
scanner [6]. In general, libraries already have labels on books but RFID tags are new
technology (by library standards). While scanning RFID tags may be quicker, to use
AuRoSS, libraries must tag the books, which costs time and money. Compared to
AuRoSS, LibreBot is an end-to-end system, it handles the book-handling process
from an electronic book request to its delivery. AuRoSS only handles missing and
misplaced books while LibreBot handles gathering the books from shelves, placing
back borrowed books, and correctly sorting misplaced books. LibreBot’s scope is
much larger and it is a more complete system compared to AuRoSS.

3 Proposed System

3.1 Overview

Our project’s purpose is to model a robot that automates the process of placing
a delivered book on the shelves, finding and bringing the desired book to the user, and
maintaining the book order of the library. When a book is returned the robot will be
able to place the book in the correct shelf in the library. The robot also can collect
unattended library books from the study desks and put them on the appropriate

3

shelves. Besides those, it will be able to bring the desired book that was specified by
its “call number” from a user. To specify a call number to the robot, the user will log
in his/her library account, assuming the library management integrated control
instructions of the robot to their library website with our help, and add its desired
book to the queue of books to fetch. The robot will also scan through the shelves to
check whether there are any books placed on wrong shelves or in wrong order
regularly -with time interval specified by the library personnel. The library
management and a normal user will have different privileges for the control of the
robot. For instance, the library manager may command the robot to look for the
shelves and adjust the order of the books if their order is not correct whereas a normal
user may only be authorized -indirectly– to issue a book fetch request in the system.

Normally, building such a robot involves heavy work for both
hardware and software components. However, our project is focused on the software
part of the robot that involves but is not limited to computer vision, object detection,
object recognition, decision-making for both low and high-level decisions, motion
planning under specific constraints (either using solvers for linear and non-linear
optimization problems or using reinforcement learning). We will use the drake
robotics framework [1] to design the robot model, to simulate the behavior of the
robot, to simulate the 3-D environment involving robots, bookshelves, books, desks,
people, and other 3-D objects, and to test the functionalities.

One of the innovation types that our project is related to is service. After our
project is finished and implemented in a library system, a user of a library will no
longer need to look for the exact location of a book in the library system, walk into
the chamber shelf where the desired book is located, take the book and register the
book into the library system but simply issue a fetch request of a specific book in the
library system. Therefore, it will ease the job of a user.

From time to time, users of the library may put a book on the wrong
shelf or position so the library personnel may need to walk around and check the
shelves to check if there are any books incorrectly located and put it into the correct
position. However, with the help of the robot, this task of the library personnel may be
delegated to the robot which makes the life of the library personnel much easier.

The scope of the change of our project is transformation rather than
optimization because its main aim is not to improve the productivity of an already
existing mechanism of fetching and placing library books but to propose a totally new
solution that take advantage of the state-of-art autonomous robot technologies to place
returned books into the shelves, to fetch desired books from the shelves and to keep
the correct order of the books in the shelves.

To illustrate how the robot works, consider a case where the robot
places a book left on a table into the correct position of the library. First, the robot
moves around the library to find any book left on a desk. When the robot encounters a
desk with no one using it for at least 45 minutes (the amount of time can change
according to a specific library rule), it stops next to the desk and runs an object
detection algorithm for the items on the desk. The reason why the robot runs an object
detection algorithm is that it should not pick a random object such as a pencil or water
cup, but pick a book. After the execution of the object detection algorithm, it should
pick any one of the books left using a motion planning algorithm to be able to grasp
the object successfully without harming the environment. For instance, there may be
people nearby so the robot should have a restricted working area and restricted angles
for the movements of its arms in order not to hit any person or object nearby. Besides
that, the book may not easily be grasped since there is no space between the book and

4

the desk so the robot may move the book to a corner of the desk and grasp from there
which requires different types of 6 or fewer degrees of freedom [2] in different parts
of the motion. After that, an object recognition algorithm is run to check whether it is
a user book or a library book. The plan, for now, is that the internal structure of the
object recognition algorithm will benefit from the area of computer vision and look
for a “call number” written on the book which is used to identify library books. After
that, the robot needs to go to the correct position of the book in the library, which may
or may not require the robot to go to a different floor or chamber. For the case of the
robot going to a different flat, decision-making is used to decide which path to take in
order to go to the specific flat and chamber. Feedback control is necessary to make
sure the robot goes to the right place without harming or restricting its environment
and itself. Each step or movement may give feedback to the robot so that it takes a
better-optimized step or motion in consecutive movements. After finding and going to
the right flat and chamber, the robot places the book into the correct position again
using decision-making, motion planning, and object recognition (to find the exact spot
of the correct position of the book by looking at the nearby books).

3.2 Functional Requirements

3.2.1 System Functionalities

System functionalities refer to the library robot's capabilities developed for
conducting specific tasks inside the library. The functionalities of the library robot
consist of several core parts.

3.2.1.1 Perception

The library bot makes decisions according to the environment around it. Hence one of
its core functionalities is the perception of its environment. The library robot should
be able to:

● Perceive books with different shapes (e.g. thin, large)
● Perceive desks in the library from which it can collect the books
● Perceive bookshelves in the library to collect books from or place books back

on to
● Perceive obstacles such as humans, chairs, and trash boxes to avoid any

collision with these
● Recognize irrelevant objects on the desks, such as notebooks, computers,

books that do not belong to the library, and other personal accessories of the
students. This ability will prevent robots from taking away incorrect types of
items from desks to bookshelves.

● Detect whether a book has a call number on it. The call number is the text or
code used to identify books in the library classification systems. If this text is
detected, the robot will attempt to take the book from the desk and put it on
the library shelves; otherwise, it will not make such an attempt.

● Recognize the call number to identify books belonging to the library. This
recognition of the unique text will enable the robot to perform many
functionalities, such as distinguishing different books and understanding what
part of the library a book belongs to.

● Recognize the texts written on the library shelves to find the correct shelve to
insert (or take from) the book.

5

● Perceive the overall structure (e.g., whether books are placed horizontally or
vertically) of a particular environment (e.g., desk or bookshelves) to make
decisions regarding the actions that will be taken to place books.

3.2.1.2 Decision-Making and Interaction
The library robot work will continue on the decision-making and interaction stage
after perceiving the environment around it. The library robot should be able to:

● Take the necessary command from the users (via integrated library system), as
input to the LibreBot software system, to conduct the following:

● Bring the specific book, which is specified as input by the user, from the
library shelves

● Put back a specific book, when the books are returned, from the returned book
desk to the shelves

● Move from one location to another within the library to conduct necessary
tasks.

● Stop the motion when an obstacle is observed along the path, change the path
if needed, and continue to the motion when the obstacle is no longer in the
path.

● According to the perception data regarding the positioning of the book, make
the necessary move to grasp the book. This move might consist of several
sequences such as first altering the current position of the book to convert it
into a more desirable position for seizing it, followed by the actual seizing act.

● According to the perception data regarding the overall structure of the library
shelves, make the necessary moves to insert the book. This move might
consist of several sequences, such as first creating a free space between other
books to insert the book, and then actually inserting the book.

● According to the text data written on books (unique “Call Number” in case of
Bilkent University) or bookshelves, stop in the shelf that the book needs to be
placed while moving through the bookshelves.

3.2.2 User Functionalities

The LibreBot system will be developed as a software system. Hence, users’
interaction with a robot (i.e., commands and requests given to the robot) will be
provided through the input sent by the user to the LibreBot system.
Users of the system interacting with the library robot will be able to:

● Request a book from the library system integrated into LibreBot’s system.
Then the call number and other relevant details will be conveyed to the robot
by the system. Finally, the robot will bring the book using this information.

● Command the robot to put returned books back on the library shelves over the
system. The robot will identify and pick the book, then request the relevant
information, such as the shelf location, from the library system. Finally, it will
carry the book back to its original place.

● Command the robot to scan shelves for misplaced books. If the robot
encounters an incorrect ordering of the books, it collects the books breaking
the order of the appropriate library classification system, and inserts them into
the correct position after scanning.

● For the safety of the people in the vicinity of the robot, the robot will have
emergency halt buttons.

6

3.3 Non-functional Requirements

3.3.1 Performance and E�ciency

The library robot system should operate in real-time to conduct interaction
between the environment and itself. Therefore the robot is required to conduct
perception and recognition tasks, then make the necessary decisions and act
accordingly in real-time.

3.3.2 Usability

The library robot should be easy to communicate with, and the model should
be integrated into the library’s existing digital system.

3.3.3 Extensibility and Portability

● The library robot model should be able to adapt to different shelving
arrangements in libraries

● The library robot model should be able to adapt to different library
classification systems.

3.4 Pseudo Requirements

● Python programming language will be used.
● Drake framework will be used for simulation and symbolic equations.
● For mathematical optimization SPOPT solver will be used which is licensed to

Drake framework.
● Pydrake bindings of Drake framework will be used to program the robot from

python programming language.
● Deepnote Jupyter notebooks will be used for learning and experimenting with

design and collaboration.
● Git with GitHub will be used as the version control system.
● 3D models of the robot and other entities that exist will be stored as SDF or

URDF files.

3.5 System Models

3.5.1 Scenarios

Request Book

● Use-case Name: Request Book

● Actor: Library User, Librarybot

● Entry Condition: User specifies the desired book’s call ID to the system.

● Exit Condition: Book is successfully returned

● Flow of Events: ○ User’s request is sent to the system

○ Librarybot check for any request from the system

○ Librarybot gets the new book request

7

○ For each book in the request

○ Librarybot looks up the call number of the book from the system

○ Librarybot gets the bookshelf location and calculates a path

○ Librarybot navigates to the location successfully

○ Librarybot picks up the book

○ Librarybot places the book in the cart

○ Librarybot navigates to the dropoff location

○ Librarybot picks up the book from the cart

○ Librarybot places the book to the dropoff location

● Alternative Flows:

○ User’s request is sent to the system

○ Librarybot check for any request from the system

○ Librarybot gets the new book request

○ Requested book is not available in the library

○ Librarybot informs the user that book does not exist

● Alternative Flows:

○ User’s request is sent to the system

○ Librarybot check for any request from the system

○ Librarybot gets the new book request

○ Librarybot looks up the call number of the book from the system

○ Librarybot gets the bookshelf location and calculates a path

○ Librarybot navigates to the location successfully

○ The book is not placed to the correct location

○ Librarybot informs the user that book does not exist

Return One Book

● Use-case Name: Return book

● Actor: Library User, Librarybot

● Entry Condition: User specifies the call ID of the book to be returned to the system.

● Exit Condition: Book is successfully returned to the library shelf.

● Flow of Events: ○ User’s return request is sent to the system

○ Librarybot check for any request from the system

○ Librarybot gets the new book return request

○ Librarybot looks up the call number of the book from the system

○ Librarybot navigates to the pickup location

○ Librarybot picks the book to be returned and places it in the cart

8

○ Librarybot gets the bookshelf location and calculates a path

○ Librarybot navigates to the shelf location successfully

○ Librarybot picks up the book from the cart

○ Librarybot inserts the book the shelf

Request to Place Misplaced Books In a Specified Shelf Correctly

● Use-case Name: Request to Place Misplaced Books In a Specified Shelf Correctly

● Actor: Library Personnel, Librarybot

● Entry Condition: Personnel makes a request to place the books in the correct shelves.

● Exit Condition: Books are correctly placed on the shelves.

● Flow of Events:

○ Personnel’s request is sent to the system

○ Librarybot checks for any request from the system

○ Librarybot gets the new place check request

○ Librarybot starts navigating through the specified shelf

○ For each book in a shelf, LibraryBot acquire the call number of the book

using text recognition

○ Librarybot requests and gets the correct bookshelf from the call number

○ After checking all books, if the cart does not have any misplaced books

then, LibraryBot will proceed to the next shelf.

○ If there is a book not placed on the correct bookshelf then move the book

LibraryBot’s cart.

○ After all books on a specific shelf are processed, calculate the correct shelf

location from the system and calculate a path to the location

○ For each book in the cart, navigate to the correct location and place the

book.

○ After the correction is completed for the specified shelf, signal all books .are

placed on the correct shelves

New Path Calculation when Obstacle is Encountered

● Use-case Name: New Path Calculation when Obstacle is Encountered

● Actor: Librarybot, An Obstacle

● Entry Condition: Librarybot is navigating inside the library for a specific request.

● Exit Condition: Librarybot proceeds to navigate to the target location.

9

● Flow of Events:

○ An obstacle (either human or nonhuman) is encountered on the path to

the target location.

○ Librarybot decides whether the obstacle on the path is a human or a

. nonhuman object according to the data from the camera.

○ If the obstacle is a human, LibraryBot stops moving until the obstacle

. passes.

○ After the obstacle is no longer present, Librarybot continues navigating to

the target location.

● Alternative Flows:

○ An obstacle (either human or nonhuman) is encountered in the path to the

target location.

○ Librarybot decides whether the obstacle on the path is a human or a

nonhuman object according to the data from the camera.

○ If the obstacle is nonhuman, LibraryBot starts calculating a new path that does

not coincide with the obstacle

○ After the obstacle is no longer present, Librarybot continues navigating to the

target location.

Accident and Collision Repost

● Use-case Name: Accident and Collision Repost

● Actor: Library User, Librarybot

● Entry Condition: The Librarybot is navigating

● Exit Condition: A collision report is generated.

● Flow of Events:

○ Librarybot is in operation

○ A user is also moving close to the robot

○ User is in the blind spot of Librarybot

○ Librarybot moves toward the user (who is still in the blindspot)

○ User enters Librarybot’s field of vision or vice versa

○ Librarybot perceives the user and halts movement.

○ Because of the leftover inertia and momentum the robot hits a

bookshelf

○ Data from Librarybot’s sensors indicate a collision.

10

○ Librarybot generates a collision report with the data from the

manipulator's arm poses, inertia, momentum, and speed.

○ Librarybot sends the collision report to the system

Change the Librarybot’s state

● Use-case Name: Change the Librarybot’s state

● Actor: Library User, Librarybot

● Entry Condition: User enters the system command of the desired state of the Librarybot

● Exit Condition: Librarybot’s mode is changed.

● Flow of Events: ○ User specifies the turn-on mode

○ If Librarybot is not already turned on, Librarybot is turned on.

● Alternative Flows: ○ User specifies the turn-off mode

○ If Librarybot is not already turned off, Librarybot is turned off..

3.5.2 Use-Case Model

We prepared a use case diagram to summarize functionalities. However, beware that
this project is not compatible OOP paradigm. So this diagram may not match what

11

would be expected from ordinary OOP project’s diagram.

12

3.5.3 Object and Class Model

The IIWARobot class signifies the singular robot entity in the system. It has a
unique identifier and operating status. It also has connections with components such
as cameras, robot arms (joints) and grippers. Each of these components store their
positions, rotation to calculate their poses relative to their parent (no parent means
world is the parent) which combined with parents’ relative poses allows to calculate
the poses relative to the world frame.

Camera components are connected to the VisionHandler class which gets RGB
images and depth maps from cameras and creates a point cloud which is then used to
do semantic categorization. From the result of semantic categorization objects in the
world such as books, bookshelves and obstacles (human or nonhuman) are initialized.
Classes such as books and bookshelves correspond to their real life counterparts and
store their dimensions and identity. Obstacle and HumanObstacle classes differ
because we assume much of the obstacles will be stationary and could be maneuvered
around but human obstacles are, generally, not stationary and can move around, in

13

order to not put humans in danger the robot would keep a safe distance from the
human obstacles and estimate their speed to take precautionary measures.
TaskAndMotionHandler class controls almost all aspects of the robot, it gets the
world objects created from the VisionHandler and dequeues a request from the
RequestHandler. From then on, it keeps state and handles all aspects of the operation.
It solves quadratic optimization programs to find optimal pseudoinverses and sends
the objects to be grasped to PickAndPlaceHandler which calculates pregrasp poses,
and communicates with TaskAndMotionHandler to manipulate the gripper.
TaskAndMotionHandler also communicates with the robot which controls the
components. Accident report class is for storing collisions or accidents and has a
unique id and stores information about the accident such as location, id of the robot
and obstacles involved.

RequestHandler handles communicating with the system to get requests from
the users and queue them for increased efficiency. The request class has a unique id
for each instance it stores its type (book request, return book request) and requesting
user. The user class stores the user type (library user or library personnel).

3.5.4 Dynamic Models

3.5.4.1 Activity Diagrams

3.5.4.1.1 Place Misplaced Books In a Shelf

Library personnel make a request to place the misplaced books on a certain
shelf. The robot server and the robot manages this operation.

14

5.4.1.2 Manage Collision

If a collision happens LibreBot should stop working and send a collision
report.

15

3.5.4.2 State Diagrams

3.5.3.2.1 Obstacle Detection

Obstacles should be detected by LibreBot. LibreBot tries to distinguish
obstacles and behave accordingly.

16

3.5.3.2.2 Book Fetch

If a book fetch request is made. First, check the request. If it is valid, navigate
to the bookshelf position and perform the book fetch operation. Then go back to the
passive waiting state (standby).

4 Other Analysis Elements

4.1 Consideration of Various Factors in Engineering Design

In this section, many aspects that may affect the LibreBot design will be discussed.

4.1.1 Public Health Considerations

Since many diseases can be transferred through human contact, it is desired
that LibreBot is as autonomous as possible. This decreases the risk of infection.
LibreBot should not require the help of library personnel frequently.

17

4.1.2. Public Safety Considerations

LibreBot should not make any moves that can damage people or make
bookshelves to fall to the ground. So, its vision should be wide enough to see
surroundings, and high enough quality to detect objects, especially humans. Pick and
place and pathfinding algorithms should be robust and consider any human contact
while performing these operations.

4.1.3. Public Welfare Considerations

There is no direct effect of public welfare that influences the LibreBot design.

4.1.4. Global Considerations

Since LibreBot will be used by people speaking various languages, it should
be designed to work with different languages. Also, vision text extraction should be
able to work with different alphabets. Different book ordering systems should be
recognized by LibreBot. There should be language support for different languages.

4.1.5. Cultural Considerations

From culture to culture, the interior design of libraries and bookshelves may
change. Path finding algorithms should work with different library designs.

4.1.6. Social Considerations

Since libraries are social places where people prefer being quiet, LibreBot
should not create much noise. To not disturb people, distracting elements such as
lights, excessive movement, and vibrations should be minimized

4.1.7. Environmental Considerations

Since the robot will be active during the working hours of the library and
constantly consuming energy, energy consumption should be minimized to make it
more environmentally friendly. To achieve this, the design of the robot should achieve
the followings:

● Energy-efficient motors and lightweight materials should be preferred. The
use of heavy metals that damage the environment should be minimized,
recyclable materials should be used instead.

● If the robot has more than one book to place, the robot should cover a minimal
distance between bookshelves.

● In order to train the ML algorithms considerable computational power is
needed which uses a significant amount of energy in the form of electricity.
This energy may come from fossil or non-renewable sources that impact the
environment negatively. Inefficient training algorithms and hardware should
not be preferred.

18

4.1.8. Economic Considerations

Number of library bots in the library should be the minimum number that can
satisfy the request and alignment requests in the library. That's why processing and
performing requests should be handled efficiently.

Effect Level Effect

Public health 2 More autonomy

Public Safety 3 Better camera, pick and

place and pathfinding

algorithms

Public welfare 0 No effect

Global factors 4 Text recognition will be

trained for different

alphabets, language support

Cultural factors 1 Pathfinding algorithm trained

for various library designs

Social factors 3 Less noise, movement, light,

vibration

Environmental Factors 6 Less energy

consumption

Economic Factors 7 Efficient request processing

and performing the requests

Table 1: Factors that can affect analysis and design.

4.2 Risks and Alternatives

LibreBot relies on text recognition and computer vision to detect books. There is a
risk that the call number is not read fully or computer vision and text detection
algorithms fail. In such cases, RFID technology will be used as a fallback plan.
Since there is a limited dataset that can be trained for the sake of this project, machine
learning algorithms that will be used may not be as desired. In such cases, these parts
will be hard coded.
The simulation tool, Drake, may not be capable of simulating the whole library or the
LibreBot completely. In this scenario, the simulation will be performed in a less
realistic environment.

Risk Name Likelihood Effect on the project B Plan Summary
Computer vision and
text detection fail

Medium LibreBot fails to
perform

Using RFID

19

ML algorithms work
poorly

Medium LibreBot works
inefficient or
sometimes fails to
perform tasks

Hard coding

Drake simulation
may not be enough
for a realistic
simulation

Medium Applicability to the
real life will be
questioning

Creating less
realistic simulation
environment

Table 2: Risks

4.3 Project Plan

Table 3: List of work packages

WP# Work package title Leader Members involved
WP1 CS 491 Reports Muhammed All Members
WP2 CS 492 Reports Muhammed All Members
WP3 CS 491 Demos Giray All Members
WP4 CS 492 Demos Utku All Members
WP5 CS 491 Problem Sets Hikmet All Members
WP6 CS 492 Problem Sets: Yasir All Members

Table 4: Detailed description of work packages

WP 1: CS 491 Reports
Start date: 01.10.2022 End date: 13.11.2022

Leader: Muhammed Members involved: All Members
Objectives: Delivering the project reports as a part of the CS491 Course

Tasks:

Task 1.1 Project Topic and Supervisor Selection: To determine the project topic and the

Supervisor. To prepare the Project information form for the submission.

Task 1.2 Project Specification Discussions: To determine the scope of the project.

Evaluate the risks and analyze market alternatives.To prepare the Project Specification

document.

Task 1.3 Innovation Expert Meeting: To present the project to an expert and receive

feedback in regard to feasibility and innovativeness. To prepare the Innovation Expert

Evaluation form.

Task 1.4 Analysis and Requirements Discussions: To formalize the specifications of the

project. To analyze market alternatives, and evaluate the risks and boundary conditions in

detail.To prepare the Analysis and Requirements Report.

Deliverables

D1.1: Project Information form

D1.2: Project Specification document

D1.3: Innovation Expert Evaluation form

D1.4: Analysis and Requirements Report

WP 2: CS 492 Reports
Start date: 01.02.2023 End date: mid-May 2022

Leader: Muhammed Members involved: All Members
Objectives: Delivering the project reports as a part of the CS492 Course

Tasks:

20

Task 1.1 Detailed Design Discussion: To formalize the project design in detail. To prepare

Detailed Design Report.

Task 1.2 Final Report Discussion: To reflect on the final status of the project. To prepare

a user’s manual. To prepare the Final Report.

Deliverables

D1.1: Detailed Design Report

D1.2: Final Report

WP 3: CS 491 Demos
Start date: 01.11.2022 End date: mid-December 2022

Leader: Giray Members involved: All Members
Objectives: Demonstrating the project’s progress to the supervisor, and the instructors of

CS491 Course

Tasks:

Task 1.1 Pick and Place Demo: To prototype the robot model with the basic capability of

picking a book from a cart and placing it on an empty shelf where the positions of all objects

are assumed to be known.

Task 1.2 Preparation for Presentation and Prototype Demo: To prototype the robot

model with the basic capability of recognizing the environment, locating the book and the

shelfs to place the book on the shelf. The vision sensors will be usedTo

Deliverables

D1.1: The Jupyter Notebooks for Pick and Place Demo

D1.2: The Jupyter Notebooks for Presentation and Prototype Demo

WP 4: CS 492 Demos
Start date: 01.02.2023 End date: mid-May 2023

Leader: Utku Members involved: All Members
Objectives: Demonstrating the project’s progress to the supervisor, and the instructors of

CS491 Course

Tasks:

Task 1.1 Interim Progress Demo: To show the progress to the supervisor

Task 1.2 Preparation for Presentation and Demo: To finalize the project and prepare for

the presentation and the demo.

Task 1.3 Preparation for CS Fair: To prepare for the CS Fair

Deliverables

D1.1: The Jupyter Notebooks for Presentation and Demo

D1.2: The Slides for Presentation and Demo

WP 5: CS 491 Problem Sets
Start date: 01.10.2022 End date: December 2022

Leader: Hikmet Members involved: All Members
Objectives: Learning the fundamental concepts for Robotic Manipulation tasks and gaining

practice in Drake toolbox with PyDrake

Tasks:

Task 1.1 Study Pick-and-Pdlace of an Object with Full State Knowledge: To learn

Kinematics and manipulation related formulations (geometric methods, physics, etc.) for

the robot in the Drake toolbox.

Task 1.2 Study Geometric Perception: To learn Geometric Perception using vision

sensors. To learn how robots perceive/see the environment with a camera in the Drake.

Deliverables

WP 6: CS 492 Problem Sets
21

Start date: 01.02.2023 End date: May 2023

Leader: Yasir Members involved: All Members
Objectives: Learning the state-of-art concepts and applications of machine learning in

Robotic Manipulation and gaining practice in Drake toolbox with PyDrake

Tasks:

Task 1.1 Study Deep Perception and Motion planning.: To learn Deep Perception and

Motion planning.

Task 1.2 Study Applications of Machine Learning in Robotic Manipulation: To learn

how reinforcement learning can be used in robotic manipulation.

Deliverables

Table 5: Gantt chart for the work packages

WP#

Work package

title

Sept.
2022

Oct.
2022

Nov.
2022

Dec.
2022

Jan.
2023

Feb.
2023

Mar.
2023

Apr.
2023

May
2023

WP1 CS 491 Reports

WP2 CS 492 Reports

WP3 CS 491 Demos

WP4 CS 492 Demos

WP5
CS 491 Problem
Sets

WP6
CS 492 Problem
Sets:

4.4 Ensuring Proper Teamwork

● Each member of the group is expected to attend weekly meetings.
● Each member of the group will take part in the project development lifecycle

and decision-making process of the group.
● Each group member should research the topics related to his work. Group

members are supposed to help each other and get help from the supervisor if
they need it.

● The work division should consider the members' interests and should be made
as just as possible.

4.5 Ethics and Professional Responsibilities

● The source code will be accessible privately to the group members and graders
in Deepnote and GitHub. The private source code should not be shared with
third parties until the end of the project.

22

● The software frameworks and libraries should be used and given credit in
compliance with the license requirement.

● Every Friday, preferably face-to-face group meetings will be scheduled with
the team and the supervisor.

4.6 Planning for New Knowledge and Learning Strategies

For the project, we will model a robot for the use of libraries. None of
the group members has previous experience or expertise in neither robot modeling nor
in the libraries. So all group members need to learn the basics of robotic manipulation
and the processes of libraries. We plan to follow the Robotic Manipulation course by
Russ Tedrake [3] to understand the topics in robotic manipulation. By following the
course we mean both studying the relevant chapters and solving the problem sets.
Also note that a similar course is given by the Bilkent CS department with the name
CS 449 Learning for Robotics by LiRA Lab. We will attend its tutorials and will be
communicating with the members of the Lab. Both courses use a toolbox named
Drake to simulate the robot [1]. We will also use this toolbox for our project. So we
will also need to learn this toolbox. In addition to the these courses, we will also
follow Drake's tutorials and examine its samples. Since it is software, naturally, we
will use its API documentation frequently while learning the toolbox.

We plan to implement the project in Jupyter notebooks for python. We
will use Google Colab platform for collaborating on writing notebooks. So we will
also need to learn using the Deepnote. We also plan to use GitHub Projects to track
project progress and manage task assignments.

We plan to use machine learning for task and motion planning.
Although all of the team members have taken some introductory courses in machine
learning, we still need to study its applications in robotics. For the text recognition of
the book’s Call number from the camera input , our goal is to either train a model
from scratch or to fine tune a state of art model for our purposes. The architecture of
the model will be similar to the Mask R-CNN model , where a neural network that
can process sequential data is preceded by a convolutional neural network. In our
case, for the sequential neural network, we are planning to try different architectures
as Long-Short Term Memory’s, Gated Recurrent Units and optimally the
Transformers architecture. The second part where we use machine learning is the
detection of an obstacle during the motion. We are planning to use a convolutional
neural network as a classifier to determine whether there is an obstacle on the current
path. Inferences will be made based on the image input from the camera. Another
approach might be using an object detection model such as YOLO to detect whether
an obstacle object is present in the image input.

We also need to research library classification systems, and investigate
the needs of the libraries and what librarians might expect from the LibreBot. We plan
to interview Bilkent University librarians to answer the previous questions and maybe
obtain statistics on library usage (e.g. daily number of returned books, the distribution
of the number of books borrowed/returned at once).

23

5 References
[1] Russ Tedrake and the Drake Development Team, “Drake: Model-Based

Design And Verification For Robotics,” 2019. [Online]. Available:
https://drake.mit.edu. [Accessed: 16-Oct-2022].

[2] Wikipedia, “Underactuation,” Wikipedia, 17-Oct-2022. [Online].
Available: https://en.wikipedia.org/wiki/Underactuation. [Accessed: 16-Oct-2022].

[3] R. Tedrake, “Robotic Manipulation: Perception, Planning, and Control.”
[Online]. Available: http://manipulation.mit.edu. [Accessed: 16-Oct-2022].

[4] A. Quart, “Automation Is A Real Threat. How Can We Slow Down The
March Of The Cyborgs?,” The Guardian, 08-Aug-2017. [Online]. Available:
https://www.theguardian.com/us-news/2017/aug/08/humans-v-robots-defending-jobs.
[Accessed: 16-Oct-2022].

[5] I. Wladawsky-BergerGuest, “Automation And The 2030 Job Hunt,” WSJ,
09-Feb-2018. [Online]. Available:
https://www.wsj.com/articles/automation-and-the-2030-job-hunt-1518198504?tesla=y
. [Accessed: 16-Oct-2022].

[6] R. Li, Z. Huang, E. Kurniawan, and C. K. Ho, “AuRoSS: An Autonomous
Robotic Shelf Scanning system,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2015, pp. 6100–6105. doi:
10.1109/IROS.2015.7354246.

24

